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E LLEN, A 4-YEAR-OLD CHILD, IS PLAYING with sev-
eral toys. As she sets the toys out to play, she
names the first as one, the second as rwo, and so on.
These words are symbols for the position of the toys
in the series the child is enumerating. In the begin-
ning, she may not understand that the last number
stated is the number of toys all together. These num-
ber words may simply be words the child has learned
to utter as she touches each object in a series of
objects. Later, at around 5 or 6 years old, the child
begins to understand that the last number named in
this game is the number of toys that are in the set
and finally that there is a numeral that represents the
number of elements in the set. Once learned, the
numeral and its name (e.g., 5 and five) become the
external representations that are the conventions for
the internal abstraction, the number of elements in
the set. Thus, the number name, five, and the numer-
al, 5, are the external representations that act to stim-
ulate an image, the internal representation, of a set
of five objects.

Another example that illustrates the interplay between
internal and external representations comes from a
recent project in which the first author was involved
(Vellom & Pape, 2000). In this project, high school
students worked with their teachers to learn to rep-
resent complex data sets using a software program
called Mathematica®. The students represented data
they had downloaded from the Internet that was re-
lated to various water pollutants in the local water-
shed. The students were asked to represent these data
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with the goal of learning about and communicating
complex relationships of natural phenomenon.
Through layering the graphs of each pollutant’s con-
centration versus varying flow rates of water, one
group of students began to understand the complex
relationships between the flow rate of the water and
the amount of pollutants a river may carry. Through
the comparison of various graphs, which served as
external representations of the rate of flow and pollut-
ant concentration, the students were able to understand
or form an internal representation for the complex rela-
tionships within this natural phenomenon.

These descriptions illustrate some of the ways
in which students come to use representation(s) to
understand the abstract concepts that are central to
mathematics learning. We use the term represen-
tation(s) to refer to both the internal and external
manifestations of mathematical concepts. We write
representation(s) with the parenthetical “s” to em-
phasize that, in many places throughout this arti-
cle, we are speaking of both the act of representing
(the verb, to represent) and the external form of
the representation (the noun form). This article pre-
sents the insights scholars have gained about
representation(s) and how this information can be
utilized to develop students’ understanding of math-
ematics. We begin by providing a general defini-
tion of representation(s), then we discuss differing
conceptualizations of representation(s) and the use
of representation(s) in mathematics learning, and
finally explore some implications for classroom
practice.
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Representation(s) in Mathematics

Within the domain of mathematics, representa-
tions may be thought of as internal—abstractions of
mathematical ideas or cognitive schemata that are
developed by a learner through experience. On the
other hand, representations such as numerals, alge-
braic equations, graphs, tables, diagrams, and charts
are external manifestations of mathematical concepts
that “act as stimuli on the senses” and help us under-
stand these concepts (Janvier, Girardon, & Morand,
1993, p. 81). Finally, representation also refers to the
act of externalizing an internal, mental abstraction.

Once the child in the first example begins to
form the meaning of the different representations
of five, she is able to use these representations
when she begins to make comparisons such as
“more than” and “less than.” The visual image of
five may be imagined and may serve as a standard
to compare other sets of objects. Figure 1 depicts
the interplay between internal and external repre-
sentations, which facilitate the child’s ability to
make such comparisons. Both the National Coun-
cil of Teachers of Mathematics’ standards docu-
ments (NCTM, 2000) and the National Research
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Figure 1. The relationship between internal and
external representations in developing child’s un-
derstanding of the concept of numeracy.

Pape and Tchoshanov
The Role of Representation(s)

Council’s science standards (NRC, 1996) call for
students to be able to use various forms of repre-
sentations flexibly to investigate and communicate
about real-world phenomena. The pathway toward
flexible use of multiple representations in teaching
and learning mathematics, however, is challenging.

In the recently published Principles and Stan-
dards for School Mathematics (NCTM, 2000), rep-
resentation is introduced as a process standard.
Although still integral to each of the content stan-
dards, this standard has been separated from the indi-
vidual content standards presented in the initial edition
(NCTM, 1989). This shift in prominence is in line
with increasing interest in representation(s) among
mathematics education researchers (e.g., Maher &
Speiser, 1998a, 1998b). Within the NCTM (2000)
document, “the term representation refers both to
process and to product . . . to the act of capturing a
mathematical concept or relationship in some form
and to the form itself” (p. 67). The new process
standard calls for all students to be able to:

1. Create and use representations to organize,
record, and communicate mathematical ideas;
2. Select, apply, and translate among mathemati-
cal representations to solve problems; and
3. Use representation(s) to model and interpret phys-
ical, social, and mathematical phenomena. (p. 67)
It is important to note that the representations re-
ferred to in each of these statements may be con-
sidered as internal, cognitive schemata or the
externalizations of these mental constructs. That is,
students may formulate internal representations to
organize mathematical ideas or to solve problems.
Alternatively, they may produce external represen-
tations to carry out the same processes.

In the sections that follow, we discuss sever-
al issues related to representation(s) in mathemat-
ics education. We advocate the position that the
development of students’ representational thinking
is a two-sided process, an interaction of internal-
ization of external representations and externaliza-
tion of mental images (Figure 1). This interaction
often takes place within social interaction. Mathe-
matical concepts are learned through the gradual
building of mental images for primary concepts
such as the number of objects in a set or complex
natural phenomena such as the relationship between
flow rate of water and amount of pollutants. The
external representations of these concepts—the
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numeral that represents this number of objects or
the graph of the pollutants—stimulate the associ-
ated mental image of the number of objects in the
set or the relationship within nature.

We argue that there is a mutual influence
between the two forms of representations: the na-
ture of an external representation influences the
nature of the internal one, and vice versa. Thus,
simplistic graphs engender simplistic understand-
ings while complex external representations, such
as the layered graph produced by the high school
students in the second example above, facilitate
understanding of more complex phenomena. Fi-
nally, we argue that representation is an inherently
social activity. When students are asked to repre-
sent data in a graph, the graph should not be a
static end result, a picture, but rather a vehicle for
discussion to help them establish a relationship or
form a justification within a social context. There-
fore, we consider representational thinking as the
learner’s ability to interpret, construct, and operate
(communicate) effectively with both forms of rep-
resentations, external and internal, individually and
within social situations. We then explore the im-
plications of theory and research for classroom
practice involving the social construction of shared
meanings of mathematical representations.

A Conceptualization of Representation(s)

Four main ideas characterize many of the
various conceptualizations of representations. First,
representations may be thought of broadly as men-
tal states. These internal representations are mental
images of, for example, a set of five objects. Sec-
ond, representations may more narrowly be thought
of as “mental reproduction of a former mental state”
(Seeger, 1998, p. 311). Here, the numeral, 5, or
the number, five, are examples. Finally the last two
formulations include “a structurally equivalent ‘pre-
sentation’ through pictures, symbols or signs,” and
“something ‘in place of’ something else” (Seeger,
1998, p. 311). The layered graph that the students
used to understand and discuss the relationship
between the flow rate of a river and the amount of
pollutants in the water is an illustration of these
conceptualizations.

Perkins and Unger’s (1994) definition of rep-
resentations includes “symbols in any symbol sys-
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tem (formal notations, language, picturing, etc.) that
serve to denote or to exemplify” (p. 2). Symbols
and symbol systems support the cognitive activity
by reducing the cognitive load (i.e., by reducing
all that the individual must think about to accom-
plish a task), clarifying the problem space, and
revealing immediate implications. Thus, symbols
or symbol systems help the individual to solve a
problem or provide an explanation, prediction, or
justification (Perkins & Unger, 1994, pp. 6-7).

It is now well accepted that the use of particu-
lar modes of representations (e.g., visual or concrete)
leads to improvement of students’ mathematical abil-
ities and development of their advanced problem
solving and reasoning skills (Krutetskii, 1976;
Yakimanskaya, 1991; Presmeg, 1999). That is, the
use of multiple representations facilitates students’
development of mathematical concepts (e.g., Bren-
ner et al., 1997) and their efforts to carry out tasks
such as problem solving (e.g., Greeno & Hall,
1997).

At the same time, in the fields of psychology,
pedagogy, and mathematics education, there is an
ongoing debate about how the mind operates with
representations. Accordingly, there is controversy
regarding the degree to which the learner is able to
extract the mathematical concept from the repre-
sentation (e.g., concrete material) in which it is
embedded. For example, when teachers use base-
ten blocks to help children learn the basic procedure
for regrouping while adding large numbers, do chil-
dren readily “see” the connection between the con-
crete materials and the arithmetic operation?

Figure 2 depicts the addition of 125 and 238
using base-ten blocks. In terms of these materials,
each ten-by-ten block or “flat” represents 100, each
one-by-ten block or “rod” represents 10, and each
“single” represents one. In order for children to
operate with these materials, they must align the
concrete materials with their mental representation
of each number and the operation that is depicted
through the manipulation of these materials. Next,
they must manipulate the materials by combining
the “flats™ resulting in three flats or 300, the “rods”
resulting in five tens or 50, and the “singles” re-
sulting in 13 singles or 13. Then, they must ex-
change 10 singles for one “rod” resulting in six
tens and three singles or 63. From a pedagogical
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Figure 2. Use of Base-ten blocks for multidigit addition.
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perspective, the question of what instructional be-
haviors are necessary for children to successfully
make this mapping between the external represen-
tations (concrete materials and numerals) and the
internal representation (addition procedure) remains
unanswered.

Researchers in mathematics and mathematics
education vary in their views on the relationship
between external and internal representations. On
the one hand, the advocates of a “picture” theory
of representation (Mitchell, 1994; Wileman, 1980)
argue that there is no difference between external
and internal (mental) representations: a mental rep-
resentation is equivalent to what it represents. From
this perspective, the student readily understands
that a “flat” represents 100. On the other hand,
some researchers (Arnheim, 1969; Mc Kim, 1972)
believe that the development of students’ thinking
is directly connected to their ability to operate with
mental images (e.g., seeing, imagining, and idea-
sketching). That is, the use of representations to
develop students’ understanding is related to their
ability to operate with the representations (i.e., to
visualize with representations themselves).

Based on their critique of the “picture” as-
sumption (i.e., that a mental representation is equiv-
alent to what it represents), Cobb, Yackel, and
Wood (1992) claim that this representational view
begins with experts’ ideas and conceptions and at-
tempts to reproduce these ideas within instructional
materials such as base-ten blocks. Therefore, when
learning a mathematical procedure using manipula-
tive materials, the learner’s task is to construct the
necessary mapping between the manipulation of
these concrete materials, the base-ten blocks, and
the internal abstraction, the procedure for addition
with regrouping. From a constructivist perspective,
the necessary mapping between the concrete mate-
rials and the arithmetic algorithm (procedure) re-
quires intensive social co-construction of meanings.
Teachers and students co-construct their under-
standing of the steps of the mathematical opera-
tion while manipulating the materials. These
concrete manipulations must be mapped onto the
steps of the algorithm such that the learners ab-
stract the sequence of steps.

The conceptualization of representation de-
veloped in this article is also based on recent find-
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ings in theory of cognition and brain investigation
(Caine & Caine, 1994; Chabris & Kosslyn, 1998).
According to these studies, the brain works more
effectively while making representational patterns
for encoding (internalizing) and decoding (exter-
nalizing) information. For example, if you ask stu-
dents to memorize the following multi-digit
number, 1123581321345589, it is almost impossi-
ble unless they follow the Fibonacci pattern where
each succeeding term is the sum of the two imme-
diately preceding. “Seeing” this relationship means
that the students can easily internalize (“memo-
rize”) and externalize (“reproduce”) the number
based on the pattern. Another example will help to
clarify this point. For a human brain to encode and
decode a set of dots indicating the same number
(e.g., 20), the placement of the dots in a pattern is
important. In case B of Figure 3, the pattern of the
dots facilitates the recognition of the number more
readily than in case A of this figure.
Unfortunately, as opposed to the varied and
complex patterns generated in the human brain,
most mathematical content offered to students is
typically presented in abstract/symbolic and linear
forms. That is, we often attempt to teach the pro-
cedure for addition with regrouping without con-
necting these steps with their physical, concrete
manifestations. The cognitive capacity of the hu-
man brain, however, more closely resembles mul-
tiple representational patterning: combinations of
concrete, visual, and abstract. It seems reasonable

B
A

Figure 3. Two different ways of presenting a set
of 20 dots.
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that the language of the brain consists of multiple
representations. Therefore, the development of stu-
dents’ thinking skills requires a multiple represen-
tational approach. These ideas are built on and
supported by a number of previous investigations
of multiple representations in teaching and learn-
ing of mathematics (Brenner et al., 1997; Bruner,
1966; Lesh, Post, & Behr, 1987; Wheatley, 1997).

Representation(s) in Learning Mathematics

Although both NCTM (2000) and NRC
(1996) documents call for students to be able to
use various forms of representations flexibly to in-
vestigate and communicate about real-world phe-
nomena, students have great difficulty developing
fluency in using representational forms in mathe-
matics. Hiebert (1988) proposes several essential
components that facilitate attaining competence in
the use of mathematical symbols. First, students
must connect individual symbols with the objects
they represent. That is, in order to carry out the
addition of two numbers or two sets of five and
six objects, the symbols “5” and “6” must be
aligned with the number of objects in a set and the
addition symbol, “+,” must be connected to the
operation of joining these two sets. Second, they
must develop symbol manipulation procedures or
the algorithms that govern the use of these sym-
bols. Next, these procedures must become routine.
The children must gain flexibility in using the ad-
dition algorithm. Finally, these symbols and rules
must be elaborated and used as referents for build-
ing more abstract systems. For example, addition
of whole numbers may be used as a basis for addi-
tion of fractions.

This sequence of stages is similar for other
representational forms such as graphs. When stu-
dents are learning to create graphical representa-
tions of data, they must learn the conventions of
the graphical form and be able to manipulate the
symbols for a given type of data set. For example,
the high school students discussed in our example
needed to understand ideas of scale in order to be
able to layer the different pollutants onto the same
coordinate axes in a meaningful way. This allowed
them to use the graphing conventions simultaneous-
ly in a complex situation that enabled them to ex-
amine a complex natural phenomenon. Because the
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students were able to change each of the pollutants
to a common scale, they were able to represent
their relative concentrations and to make statements
that depicted the amounts of pollutants relative to
the flow rate of the stream.

Based on the premise that it is unclear how
concrete representations assist in this process, Hall
(1998) developed the “procedural analogy theory.”
Accordingly, classroom mathematics scenarios us-
ing concrete materials typically begin with explo-
ration followed by more systematic manipulation
of the materials. Students are provided some time
to explore the materials without direction, but they
are frequently directed into a particular use of the
materials before their insights are examined. Al-
though there may be some allowance for student-
generated ways of using the materials, the teaching
sequence typically moves toward standard uses,
requiring students’ manipulation of the concrete
materials to mimic standard algorithms. Thus, stu-
dents begin joining sets of counters in relation to a
mathematical word problem, effectively modeling
the action of addition, but are too quickly led to
use the materials in a teacher directed fashion. Fi-
nally, students are funneled into the written, sym-
bolic procedures.

This sequence follows Bruner’s (1966) learn-
ing model based upon three levels of engagement
with representations: enactive (e.g., manipulating con-
crete materials), iconic (e.g., pictures and graphs),
and symbolic (e.g., numerals). Through early ex-
ploration of concrete materials, students are ex-
pected to abstract mathematical procedures that are
analogous to symbolic procedures. Through the use
of analogy, transformation, and simplification, new
understandings are built from existing knowledge.
That is, the students must map or transform the
manipulation of the materials onto the symbolic
steps of the mathematical operation and simplify
these manipulations through the use of the con-
ventional algorithm to become competent in using
this operation. This process is successful only to
the degree that the concrete material procedures
are analogous to procedures with symbols and the
degree to which this connection is made explicit
for the learner.

As discussed before, critics of the “represen-
tational view of mind” (Cobb et al., 1992) contest
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this formulation as problematic because instruc-
tional materials said to embody mathematical con-
cepts are developed by experts, embody experts’
conceptions of mathematical ideas, and may not
be readily available or understandable to the nov-
ice. Only when the use of representation(s) is built
up in the classroom as a cultural activity are stu-
dents able to come to an understanding of the mean-
ings of the concrete materials and the associated
symbolism. That is, in order for the connection to
be made between external representations and the
mathematical concept they represent and between
the mathematics and the children’s experiences,
representations must be viewed as vehicles for ex-
ploration within social contexts that allow for mul-
tiple understandings of mathematical content
(Seeger. 1998). This conceptualization necessitates
an alternative view of the use of representation
from that which is typical within mathematics class-
rooms.

Using Representation(s) in the Classroom

In this section, we highlight the implications
for mathematics classroom instruction of the con-
ceptualization of representation developed in this
article. This discussion draws upon research relat-
ed to children’s learning of mathematics and the
representations they produce for mathematical prob-
lems. Finally, this discussion provides suggestions
for the classroom teacher.

Representation(s) in social contexts

Students need to practice the use of multiple
representations in various situations. Practicing
representation(s) must be part of a social environ-
ment: “Learning to construct and interpret repre-
sentations involves learning to participate in the
complex practices of communication and reason-
ing in which the representations are used” (Greeno
& Hall, 1997, pp. 361-362). While practicing the
construction and use of representational forms, stu-
dents negotiate the meanings of the forms they have
produced as well as the meanings of standard rep-
resentational forms (DiSessa, Hammer, Sherin, &
Kolpakowski, 1991; Greeno & Hall, 1997).

Students’ initial attempts to portray phenom-
ena using representations often involve non-stan-
dard symbolism that is negotiated and refined

through discourse with peers and teachers (DiSes-
sa et al., 1991). In DiSessa and colleagues’ work,
children represented an object’s motion with suc-
cessive tick marks (or tallies). The object’s speed
was represented by the angle of the individual mark.
This intuitive representation of speed is analogous
to the concept of the slope of a distance-time graph
for the motion of the object.

Students use their prior knowledge to make
sense of all forms of representations. In addition,
these initial representations and their evolution de-
pend upon the purpose for creating the representa-
tional form, the discussion that surrounds the
presentation of these forms, and instructional prac-
tices in which the students are engaged. Meira
(1995) investigated the transformation of “material
displays” (e.g., pictures, written symbols, or tables
of data) through activity. Her results indicate that

(a) the design of displays during problem solving
shapes one’s mathematical activity and sense mak-
ing in crucial ways, and (b) knowledge of mathe-
matical representations is not simply recalled and
applied to problem solving but also emerges (wheth-
er constructed anew or not) out of one’s interaction

with the social and material settings of activity. (p.
269)

Thus, when the goal of instruction is to learn to
represent mathematical concepts or to solve prob-
lems involving mathematical representations, stu-
dents must be given the opportunity to interact with
one another and the teacher. Through this interac-
tion within problem-solving situations, knowledge
of mathematical representation(s) and mathemati-
cal understanding emerges and develops.

Representations as cognitive tools
Representations must be thought of as tools
for cognitive activity rather than products or the
end result of a task. For example, the models (e.g.,
graphs or other pictorial representations) produced
may be used to help students explain or justify an
argument. “When representations are used as tools
for understanding and communication, they are
constructed and adapted for the purposes at hand”
(Greeno & Hall, 1997, p. 362). Representations
allow individuals to track intermediary results,
ideas, and inferences. Since an external represen-
tation embodies the important relationships pre-
sented in data or a word problem, they lighten the
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cognitive load of the individual and serve to orga-
nize the individual’s further work on a problem.
Given the representation, the learner may work on
alternative parts of the problem. Representations
then may be used to facilitate an argument and to
support conclusions.

Thus, in situations that may be characterized
as typical school activities (i.e., those in which
representations are seen as end results rather than
tools for explanation), students often produce rep-
resentations that lack meaning and from which no
relational statements may be drawn. However, in
more realistic learning contexts, students may make
sense of complex phenomena through their efforts
to construct and through the use of graphical rep-
resentations of these complex systems (Vellom &
Pape, 2000). In the study of high school students’
representations discussed in the introduction, stu-
dents were also given a task that, unlike the flow
rate task, was similar to a typical school task. They
were asked to form representations of data they
had collected related to their peers (e.g., eye color,
height, and weight). In this activity, students were
unable to formulate meaningful relational state-
ments from their data. By contrast, in the real-
world activity (analyzing the relationship between
flow rate and concentration of pollutants), they
came to understand and were able to communicate
interesting relationships.

Instructional practice

Finally, students must be taught using a com-
bination of instructional practices. Tchoshanov
(1997) conducted a pilot experiment with Russian
high school students on trigonometric problem solv-
ing and proof. The first comparison group of stu-
dents (“pure-analytic”) was taught by a traditional
analytic (algebraic) approach to trigonometric prob-
lem solving and proof. The second comparison
group (“pure-visual™) was taught by a visual (geo-
metric) approach using enactive (i.e., geoboard as
manipulative aid) and iconic (pictorial) represen-
tations. The third, experimental group (“represen-
tational”) was taught by a combination of analytic
and visual means using translations among differ-
ent representational modes. The representational
group scored 26 percent higher than the visual and
43 percent higher than the analytic groups.

Pape and Tchoshanov
The Role of Representation(s)

In this experiment, students in the “pure” (an-
alytic and/or visual) groups “stuck” to one particu-
lar mode of representation; they were reluctant to
use different representations. For instance, students
in the pure-visual group tried to avoid any analytic
solutions: they were “comfortable” only if they
could use visual (geometric) problem-solving and
proof techniques. Students in the representational
group were much more flexible “switching” from
one mode of representation to another in search of
better understanding of mathematical concepts.
Therefore, we realized that any intensive use of
only one particular mode of representation does
not improve students’ conceptual understanding and
representational thinking.

This pilot experiment also showed the im-
portance of students’ social interaction using dif-
ferent models (e.g., concrete, visual, and abstract)
in the process of developing their representational
thinking. We have observed that when multiple rep-
resentations are used, the level of students’ inter-
action automatically goes up (i.e., they are more
eager to exchange their ideas using different rep-
resentations and they learn from each others’ way
of solution). This is in contrast to the comparative-
ly low level of interaction when using any single
representation.

The main focus in implementing this approach
in the actual mathematics classroom was improve-
ment of students’ representational thinking in the
context of:

* students’ exploration of alternative ways of
mathematical inquiry and reasoning;

e involvement of students in a variety of hands-
on and minds-on activities (e.g., modeling, draw-
ing, imagining, mapping, etc.) in the process of
interpreting and communicating mathematical
ideas;

¢ students’ construction and co-construction (i.e.,
within social interaction) of non-standard mul-
tiple representations of problem solving and
proof techniques; and

» students’ understanding of harmonic relationship
between different forms of multiple representa-
tion of mathematical knowledge.

These examples demonstrate that the devel-
opment of students’ mathematical understanding and
representational thinking requires the combination of
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multiple representations as well as the interaction
of both internal and external representations.
Through activity, the learner begins to abstract
meaning. However, we must be cautious not to
advocate the position that this abstraction occurs
solely within the individual. It is through the ex-
ternalization of these abstractions within social
environments that learners begin to negotiate the
meanings of their understandings and refine these
representations accordingly.

The educational significance of this concep-
tualization is in presenting an alternative holistic
approach to the development of representational
thinking through construction of students’ under-
standing (internalization) and improvement of their
creativity (externalization). Unlike previous stud-
ies (e.g., Herscovics, 1996; Hiebert & Carpenter,
1992), which paid attention primarily to the inter-
nalization stage, this approach is characterized by
its completeness and orientation toward creativity
through understanding.

We firmly believe that, in the development
of students’ representational thinking, internaliza-
tion without externalization is non-holistic and in-
complete. We call the interrelated processes of
internalization and externalization cognitive repre-
sentation. The important point here is that despite
a tacitly accepted one-sided view of internal repre-
sentation as a cognitive one (Seeger, 1998), we
consider cognitive representation as a zone of in-
teraction of external and internal representations
(refer to Figure 1). Consistent with the vision of
representation within the NCTM (2000) document,
cognitive representation reflects both the process
(internalization) and the products (externalization)
of representational thinking.

Conclusions

If one of the goals of mathematics is the flex-
ible use of representation(s) (NCTM, 2000), then
teachers’ behaviors and classroom norms will be
important to examine. We would like to highlight
four implications of this discussion for classroom
practice. First, students must be given the opportuni-
ty to practice representation—both the production of
external representations and the internalization of
mathematical ideas through social activity involv-
ing various external representations. Second, rep-
resentation is inherently a social activity. Students
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come to understand both the process of representa-
tion and its products through social activity.

Third, in order for children to become compe-
tent mathematicians, instruction must use a variety
of techniques (e.g., analytic and geometric). Finally,
representations must be thought of as tools for think-
ing, explaining, and justifying. Thus, teachers and
students must develop classroom norms that facili-
tate explanation and justification and the use of rep-
resentations in the service of supporting arguments.
Although the pathway is challenging, these insights
will facilitate the changes necessary for significant
change in classroom practices leading to meaning-
ful mathematical understanding.
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